“Disruptor” residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Ga subunits

Ali Asli, Isra Sadiya, Meirav Avital-Shacham, Mickey Kosloff*

Understanding the molecular basis of interaction specificity between RGS (regulator of G protein signaling) proteins and heterotrimeric (Gαγ) G proteins would enable the manipulation of RGS–G protein interactions, explore their functions, and effectively target them therapeutically. RGS proteins are classified into four subfamilies (R4, R7, RZ, and R12) and function as negative regulators of G protein signaling by inactivating Gα subunits. We found that the R12 subfamily members RGS10 and RGS14 had lower activity than most R4 subfamily members toward the Gα subfamily member Gαo. Using structure-based energy calculations with multiple Gα-RGS complexes, we identified R12-specific residues in positions that are predicted to determine the divergent activity of this subfamily. This analysis predicted that these residues, which we call “disruptor residues,” interact with the Gα helical domain. We engineered the R12 disruptor residues into the RGS domains of the high-activity R4 subfamily and found that these altered proteins exhibited reduced activity toward Gαo. Reciprocally, replacing the putative disruptor residues in RGS18 (a member of the R4 subfamily that exhibited low activity toward Gαo) with the corresponding residues from a high-activity R4 subfamily RGS protein increased its activity toward Gαo. Furthermore, the high activity of the R4 subfamily toward Gαo was independent of the residues in the homologous positions to the R12 subfamily and RGS18 disruptor residues. Thus, our results suggest that the identified RGS disruptor residues function as negative design elements that attenuate RGS activity for specific Gα proteins.

INTRODUCTION

Heterotrimeric guanine nucleotide–binding proteins (G proteins) play a critical role in countless physiological processes, functioning as molecular switches in intracellular signal transduction pathways (1, 2). The Gα subunit determines the activation state of the G protein switch, cycling between a guanosine diphosphate–bound inactive state and a guanosine 5'-triphosphate (GTP)–bound active state that mediates downstream signaling. The duration of heterotrimeric G protein signaling is controlled by RGS (regulator of G protein signaling) proteins that inactivate Gα subunits (3–6). This “turn off” function of RGS proteins is achieved by allosterically accelerating GTP hydrolysis in the Gα subunits. This allosteric regulation is mediated by the ~120–amino acid “RGS domain,” which is present in all RGS proteins and is responsible for the function of RGS proteins as guanosine triphosphatase (GTPase)–activating proteins (GAPs) (4, 5, 7). As expected from their key role in G protein–coupled signaling, RGS proteins mediate numerous physiological functions, are involved in a wide range of human pathologies, and are considered promising drug targets (8–12).

Proteins with RGS domains represent a large and diverse family. Of these, the 20 “classical” or “canonical” RGS proteins can recognize and inactivate Gα subunits that belong to the Gα and Gαi subfamilies. Canonical RGS proteins have been further divided into four subfamilies (R4, R7, RZ, and R12) based on their sequence similarity (13). The R4 subfamily is the largest, consisting of 10 members: RGS1, RGS2, RGS3, RGS4, RGS5, RGS8, RGS13, RGS16, RGS18, and RGS21 (8, 12, 13). With the noted exception of RGS2, which has no activity toward Gαi subfamily members (14–16), members of the R4 subfamily are generally considered to have high GAP activity toward the Gα subfamily, with well-studied examples including RGS1 (17, 18), RGS4 (18–20), and RGS16 (18, 21–23). The R12 subfamily (RGS10, RGS12, and RGS14) is implicated in a range of physiological processes or pathologies. RGS10 is suggested to be involved in cardiovascular diseases (24), platelet function (25), macrophage activation (26), Parkinson’s disease (27), and chemoresistance in ovarian cancer (28). RGS12 is implicated in neuron and bone differentiation (29, 30), cardiac hypertrophy, and heart failure (31). RGS14 is abundant in the brain and is involved in spatial memory and learning (32, 33), cell division and chemotaxis (34, 35), and Parkinson’s disease (36). Therefore, the R12 subfamily members attract considerable attention both as physiological modulators of signaling and as potential drug targets. However, their cellular targets and the exact role that their GAP function plays in these cascades are unknown.

Although R12 subfamily members were suggested to act as specific GAPs toward the Gα subfamily (37), previous studies reported different relative GAP activities for this subfamily. For example, the RGS10 RGS domain has high activity toward Gαi (5), and its GAP activity is higher toward Gαi and Gαo than is the activity of other RGS proteins, such as RGS19 and RGS4 (38). Compared to high-activity RGS proteins, such as RGS4 and RGS16, RGS12 (39, 40) and RGS14 (18, 41, 42) exhibit lower GAP activity toward Gαi. Other studies measured high GAP activity of RGS14 toward both Gαi and Gαo (43) or reported that RGS14 has a higher GAP activity than that of RGS4 toward Gαi and Gαo (44, 45). Therefore, quantification of the GAP activities of this R12 subfamily in relation to those of R4 family members is lacking, as is an understanding of which amino acids determine R12 GAP activity toward the Gα subfamily.

The structural basis for the GAP activity and the selectivity of RGS domains is of great interest yet is only partially understood. To accelerate the GTPase activity of the Gα subunit, the RGS domain binds to the Gα–GTP complex and allosterically stabilizes the Gα catalytic machinery in its transition state conformation (12, 13, 21, 46–49).
In all of the structures of Gα-RGS complexes solved to date, the RGS domain binds mainly to the GTPase domain of the Gα subunit (16, 37, 46, 50–53). However, several of these structural studies report RGS interactions with another Gα domain, the Gα helical domain (37, 51–53). In the G protein superfamily, the Gα helical domain is found only in the Gα subunits of heterotrimeric G proteins, and for many years, the purpose of the Gα helical domain was unclear. Suggested functional roles included increasing the affinity of the G protein for GTP (54), acting as an intrinsic GAP (55), or participating in effector recognition (56). The Gα helical domain is implicated in binding to inhibitory proteins, such as those with the GoLoco motif (57–59), and in catalyzing nucleotide exchange and Gα activation by G protein–coupled receptors (60). The previous structural studies of Gα-RGS complexes suggest that RGS contacts with the Gα helical domain are variable and heterogenic, properties consistent with this domain contributing to interaction specificity (37, 51). Structural studies of RGS2 and RGS8 bound to Go4 also indicated that interactions with its Gα helical domain might play a role in dictating affinity or GAP “potency,” the relative GTPase-accelerating activity of RGS proteins (52, 53). Together, these studies raise two interconnected questions. First, are RGS domain interactions with the Gα helical domain functionally important for RGS GAP activity? Second, how might these interactions encode specificity among members of the RGS family?

In a previous study, we used energy calculations to analyze structures of RGS domains with Gα subunits from the G1 subfamily (18), identifying which RGS residues contribute substantially to interactions with these Gα subunits. We further classified these Gα-interacting RGS residues into two groups. The first group contains “Significant & Conserved” (S&C) residues, which make similar and substantial energy contributions across all available structures. These residues make most of the interactions with the residues adjacent to the Gα catalytic site and presumably have a primary role in accelerating Gα GTPase activity by stabilizing Gα in a conformation optimal for GTP hydrolysis (1, 12, 49, 61). The second group contains “Modulatory” residues, which make substantial energy contributions only in some of the structures and are not conserved across all of the Gα domains. Modulatory residues are located at the periphery of the RGS domain interface with Gα subunits. We proposed that modulatory residues encode specific interactions with particular Gα subunits (18). Substitution of such modulatory residues in low-activity RGS proteins with their counterparts from high-activity Gα RGS domains showed that these modulatory residues encode RGS selectivity in the RZ and R4 subfamilies. The hypothesis that emerged from this study is that RGS modulatory positions determine interaction specificity with Gα subunits. Yet, the mechanistic details of this putative role are lacking.

Here, we evaluated the relative GAP activities of R12 and R4 subfamily members toward the representative G1 subfamily member Go4. We found that, compared to the high-activity R4 subfamily members RGS4 and RGS16, the R12 subfamily members RGS10 and RGS14 had lower GAP activity toward Go4. Using structure-based computations, we identified R12-specific residues in modulatory positions that may be responsible for these differences in GAP activity. We analyzed these residues at the three-dimensional (3D) structural level and predicted that they interact with the Gα helical domain. We validated our computational predictions through mutagenesis of R4 and R12 RGS domains. Introducing the modulatory residues from R12 subfamily members into high-activity R4 subfamily members converted them into RGS proteins with low GAP activity toward Go4, whereas replacing the modulatory residues in R12 subfamily members with low GAP activity toward Go4 resulted in higher GAP activity toward this Gα subunit. Together, our results suggest that the R12-specific disruptor residues that we identified function as negative modulatory elements that attenuate RGS GAP activity in a specific fashion.

RESULTS

R12 subfamily members show lower GAP activity toward Go4 compared to that of high-activity Gα domains

We compared the GAP activities of RGS10 and RGS14, which are members of the R12 subfamily, with the activity of RGS16 and RGS4, which are representative members of the R4 subfamily with high activity toward the G1 subfamily (18, 20, 21, 23, 62). We used single-turnover GTPase assays with Go4 and a catalytic concentration of RGS proteins to calculate the catalytic rate (k_G) of the four RGS proteins according to previously published methodology (48, 63, 64). RGS10 and RGS14 had lower GAP activities toward Go4 ($k_G = 0.5$ and 0.3 min^{-1}, respectively), and RGS16 and RGS4 had higher GAP activities ($k_G = 1.3$ and 1.3 min^{-1}, respectively) (Fig. 1A). We also measured the GAP potency (52, 65), the concentration of RGS protein that produced a 50% maximal increase in GTP hydrolysis [half-maximal effective concentration (EC50)], of RGS10, RGS14, and RGS16 (Fig. 1B). In this in vitro assay, RGS16 had a higher GAP potency than those of RGS10 and RGS14 (RGS16 EC50 = 7 nM; RGS10 EC50 = 42 nM; RGS14 EC50 = 63 nM). We then turned to energy-based analysis to identify which R12 residues might determine the lower GAP activities of these R12 subfamily members.

Energy calculations predict that R12-specific residues in modulatory positions perturb productive interactions with the Gα helical domain

On the basis of the methodology that we developed previously (18), we can use energy-based calculations to identify which RGS residues contribute substantially to interactions with Gα subunits. We analyzed four x-ray complexes of Go4 subunits bound to three different RGS domains from R4 subfamily members with high GAP activity toward the G1 subfamily: RGS1, RGS4, and RGS16 (see Materials and Methods). Two of the complexes are of RGS16, which was solved in complexes with Go4 and Goα (37, 51). We used the

Fig. 1. RGS10 and RGS14 have lower GAP activities toward Go4, compared to those of RGS16 and RGS4. (A) k_G constants for RGS16, RGS4, RGS10, and RGS14 for GTP hydrolyzed by Go4 (600 nM) in the presence of RGS protein (20 nM). Data are means ± SEM of at least three independent biological replicates. (B) Dose-response analysis of RGS16, RGS10, and RGS14 activity toward Go4. The EC50 values (RGS16 = 7 ± 1 nM; RGS10 = 42 ± 2 nM; RGS14 = 63 ± 5 nM) were calculated using three-parameter sigmoidal curves. Data are means ± SEM of experiments performed in triplicate and are representative of three or more independent biological replicates for each RGS tested.
finite-difference Poisson-Boltzmann (FDPB) method to calculate the net electrostatic and polar contributions ($\Delta \Delta G_{\text{elec}}$) of each RGS residue that is within 15 Å of the RGS-Gα interface in these complexes. Nonpolar energy contributions ($\Delta \Delta G_{\text{np}}$) were calculated as a surface-area proportional term by multiplying the per-residue surface area buried upon complex formation by a surface tension constant of 0.05 kcal/mol per Å2. Our calculations indicated that electrostatic interactions represent most of the interactions between R4 RGS residues and Gαi_1 (fig. S1). We classified RGS S&C and modulatory residues (18) and visualized them on the superimposed structures of these four complexes (Fig. 2A). Our analysis showed that RGS S&C residues interact only with the GTPase domain in all four structures. In contrast, we found that RGS modulatory residues interact both with the GTPase domain and with the Gα helical domain. Using the structures of Gαi_1 with RGS16 (Fig. 2B) and RGS4 (Fig. 2C), we identified four modulatory residues in each RGS protein that interacted with the Gα helical domain. In RGS16, the modulatory residues Glu135, Glu164, Lys165, and Lys173 contributed substantially to the interaction with the helical domain of the Gα subunit (Fig. 2B). In RGS4, Glu161, Lys162, Arg166, and Lys170 contributed substantially to the interaction with the Gα helical domain (Fig. 2C). The RGS4 residues Glu161, Lys162, and Lys170 are equivalent to the RGS16 residues Glu164, Lys165, and Lys173, respectively. Although there is no contributing RGS4 residue that corresponds to RGS16 Glu135, Arg166, which is unique to RGS4 among all classical RGS proteins (and corresponds to Pro169 in RGS16), contributed substantially to the interaction with the Gα helical domain.

To identify which R12 subfamily residues are responsible for the low GAP activity of these RGS proteins toward Gαi_1, we mapped the results of our energy analysis onto the sequences of the representative R4 subfamily members and compared them to the sequences of the R12 RGS domains (Fig. 3). Using the available crystal structures of high-activity RGS proteins with Gαi_1 and Gαi, we examined which substitutions of R4 residues in the R12 subfamily might hinder interactions with Gα subunits. Our analysis predicted that the contribution of all S&C residues is conserved across these R4 subfamily members (Fig. 3A) and across the three R12 subfamily members (Fig. 3B). Although most of the RGS modulatory residues were predicted to contribute similarly across the R12 subfamily and were thus classified as conserved modulatory residues (Fig. 3B), four modulatory positions were markedly different. Three of these residues, which we termed putative “disruptor” residues, are located in modulatory positions, are specific to the R12 subfamily, and were predicted to perturb the favorable interactions found in the R4 subfamily complexes with Gα subunits. In RGS16, these three modulatory positions (Glu135, Glu164, and Lys165) interact with the Gα helical domain (Fig. 2B). The residues corresponding to RGS16 Glu164 and Lys165 are conserved in RGS4 and RGS1 (Fig. 3A). However, our structural analysis indicated that there is no contribution in RGS4 from Cys132 (Fig. 2C), which is the position that corresponds to RGS16 Glu135. Rather, Arg166, which is unique to RGS4, is predicted to contribute to interactions with the helical domain. We note that an arginine in this position is unique to RGS4 among all RGS family members. The last RGS modulatory position that, according to our calculations, interacts with the Gα helical domain (Lys173 in RGS16 and Lys170 in RGS4) is identical across the R4 and R12 subfamilies (Fig. 3) and is therefore not likely to contribute to their specificity toward Gα subunits.

Analyzing the structural differences between these R12 residues and the corresponding residues in high-activity R4 subfamily members suggested a mechanistic basis for the lower GAP activity of the R12 subfamily. We superimposed the structures of RGS16-Gαi_1 and RGS16-Gαi and visualized the modulatory RGS16 residues Glu135, Glu164, and Lys165 and their interacting partner residues in the Gα subunit (Fig. 4A). In the high-activity RGS16 protein, Lys165 forms an electrostatic and hydrogen bond network with multiple residues on both sides of the interface—an intramolecular salt bridge with RGS16 Glu164, an intermolecular salt bridge with Gαi_1 Glu116 (located in the αB-αC loop), and a hydrogen bond with Gαi_1 Ser75 (Fig. 4A, top). We observed a similar interaction network in the complexes of Gαi_1 with RGS1 and RGS4 (fig. S2). One interaction that we observed in the structural analysis that was not predicted from the energy calculations was the electrostatic contributions of Lys165 to the interactions with Gαi_1. Because we calculated the energy difference between the monomers and the complex structures, which correspond to the

...net electrostatic contributions to affinity in the complex, we interpreted the former result to mean that the Lys¹⁶⁵-mediated electrostatic network plays an allosteric role in RGS GAP activity rather than contributes to an increased RGS-Go affinity. Moreover, the conformation of the αB-αC loop differs between Go1i and Go8. Nevertheless, the corresponding residue to Go1i Glu¹¹⁶ in Go8, Asp¹¹⁶, forms a similar electrostatic interaction with RGS16 Lys¹⁶⁵ (Fig. 4A, bottom). The corresponding residue in RGS4 forms a salt bridge with Goⁱ¹ Glu¹¹⁶ (Fig. 4C). The corresponding residue in RGS14 forms a salt bridge with Goⁱ¹ Glu¹¹⁶ (Fig. 4D). Together, these data suggest that the three putative disruptor residues in either RGS10 or RGS14 are predicted to have a similar negative effect on the interactions of these RGS domains with both Goⁱ¹ and Go^o.

Modeling the corresponding residues in RGS10 and RGS14 suggested that they perturb interactions with the Go helical domain. We superimposed the structures of RGS10 and RGS14 on the structures of the RGS16-Go¹ⁱ and RGS16-Go^o complexes (Fig. 4B, top). This revealed that the KY (RGS10) and KF (RGS14) motifs form the electrostatic and hydrogen-bond network found in the Go complexes with high-activity RGS domains (Fig. 4B, top; see also Fig. 4A, top, and fig. S2). The third RGS16 modulatory residue, Glu¹³⁵, forms a salt bridge with Go Arg⁹⁰ (Fig. 4A, bottom). The corresponding residues in RGS10 (Gln¹⁰³) and RGS14 (Gln⁸⁶) cannot form such an intermolecular salt bridge (Fig. 4B, bottom). In Go^o, the basic residue (Arg⁸⁶) that interacts with the RGS16 Glu¹³⁵ originates one helix turn earlier than does Arg⁹⁰ in Go¹ⁱ. However, the guanidino groups of both basic Go residues occupy essentially the same position and interact similarly with RGS16 Glu¹³⁵. The corresponding R12 glutamine residue is predicted to disrupt this interaction with both Go¹ⁱ and Go^o (Fig. 4B, bottom). The unique Arg¹⁶⁶ residue in RGS4 forms a salt bridge with Go¹ⁱ Glu¹¹⁶ (Fig. 4C). The corresponding RGS10 Ser¹³⁶ and RGS14 Ala¹¹⁹ residues cannot form such an intermolecular salt bridge (Fig. 4D). Together, these data suggest that the three putative disruptor residues in either RGS10 or RGS14 are predicted to have a similar negative effect on the interactions of these RGS domains with both Go¹ⁱ and Go^o.

Looking across the R4 subfamily, we identified RGS18 as a unique member with putative disruptor residues in the same positions as the R12 putative disruptor residues. In the position that corresponds to RGS16 Lys¹⁶⁵ (Fig. 4A), RGS18 has a glutamine (Gln¹⁸⁶). Similar to the R12 KY and KF motifs, Gln¹⁸⁶ is predicted to perturb the electrostatic network with the Go helical domain residues (Fig. 4E, left; see also Fig. 4B, top). In the position that corresponds to RGS16 Glu¹³⁵ (Fig. 4A, bottom), RGS18 has a histidine (His¹⁵⁶) that, similar to the R12 residues in this position, cannot form an intermolecular salt bridge with the Go helical domain residues (Fig. 4E, right). These results suggest that RGS18 contains the same putative disruptor elements as those of the R12 subfamily.

Inserting R12 putative disruptor residues into high-activity R4 subfamily members impairs their GAP activity

To examine whether the R12 putative disruptor residues that we identified are responsible for the lower GAP activities of RGS10 and RGS14, we inserted them into high-activity R4 subfamily members. We replaced all three or pairs of the corresponding RGS16 residues (Glu¹³⁵, Glu¹⁶⁴, and Lys¹⁶⁵) with their counterparts in RGS10 (Gln¹⁰³, Lys¹¹⁴, and Tyr¹³²) or RGS14 (Gln⁸⁶, Lys¹¹⁴, and Phe¹¹⁵) and measured the GAP activities of these mutants using single-turnover GTPase assays. On the basis of our structural comparison (Fig. 4, A and B), we hypothesized that substituting the RGS16 Glu¹⁶⁴-Lys¹⁶⁵ motif would have a more substantial effect on GAP activity than would substituting RGS16 Glu¹³⁵ with the corresponding R12 glutamine motif. Substituting the RGS16 Glu¹⁶⁴-Lys¹⁶⁵ motif with the R12 putative disruptor residues [to generate the RGS16 E164K-K165Y (EK-KY) mutant] reduced its GAP activity (Fig. 5A). The additional E135Q substitution (to generate the EEK>QKY mutant) did not further reduce GAP activity. When we substituted the RGS16 E164-K165 motif with the corresponding putative disruptor residues from RGS14, the RGS16 E164K-K165F (EK-KF) mutant exhibited a larger impairment in GAP activity than did the EK-KY mutant (Fig. 5A). The larger effect of the RGS14 disruptor residues, compared to that of the RGS10 residues, recapitulated the lower GAP activity of RGS14 compared to that of RGS10 (Fig. 1). In contrast with the EEEK-QKY mutant, adding the E135Q mutation to the E164K-K165F mutant (EEK>QKF) further reduced GAP activity. As expected from the similarity of the disruptor motifs in the structures of RGS10, RGS14, and RGS18 (Fig. 4, B and E), substituting RGS16 Glu¹³⁵ and Lys¹⁶⁵ with their RGS18 putative disruptor counterparts (to generate the RGS16 mutant E135H-K165Q, E-K>H-Q)
also impaired GAP activity (Fig. 5A). In contrast, mutation of adjacent residues that were not predicted to contribute as much to the interaction between RGS16 and Gα, such as RGS16 residues (Tyr168 and Pro169 to Ala), did not impair GAP activity. Tyr168 is conserved across most RGS domains and is present in all high-activity R4 subfamily members and in all R12 subfamily members. Pro169 is conserved across all high-activity R4 subfamily members, with the exception of RGS4, in which the corresponding Arg166 is a unique contributing modulatory residue (Fig. 4C). In RGS14, the corresponding residue is an alanine (Fig. 4D). As expected from our energy calculations indicating that these two conserved residues do not contribute to interactions with Gα subunits (Fig. 3), the Y168A and the P169A mutants exhibited similar GAP activities to that of wild-type (WT) RGS16 (Fig. 5A).

In a reciprocal experiment, we replaced the RGS10 or the RGS14 putative disruptor residues with their RGS16 counterparts, which reduced GAP activity (fig. S3). The R12 subfamily has an adjacent heterogeneous structural region in the extended αV-to-αVI loop (37). We predict that this region will likely affect the local conformation of the R12 subfamily members. Therefore, we hypothesized that this heterogeneity does not enable substituted residues to reach the exact conformation seen in RGS16 or RGS4 (Fig. 4A and fig. S2). Thus, substituting only the two or three modulatory residues would be insufficient to
convert the RGS10 and RGS14 proteins into high-activity GAPs. However, an RGS14 chimera in which we substituted all RGS14 residues that can affect regions αV to αVI and αVII, which contain the three RGS14 disruptor residues Glu¹⁶¹, Lys¹¹⁴, and Phe¹¹⁵, with their RGS16 counterparts, resulted in a protein with increased GAP activity compared to that of WT RGS14 (Fig. S3).

Dose-response analysis of the GAP potencies of the RGS16 EEK>QKF mutants indicated that the GAP potency of these mutants was reduced (Fig. 5B). The EC₅₀ of the EEK>QKY mutant was 26 nM, and the EC₅₀ of the EEK>QKF mutant was 73 nM, whereas the EC₅₀ of WT RGS16 was 7 nM (Fig. 5B). Therefore, these RGS16 mutants had a comparably reduced GAP potency, which was similar to that of RGS10 and RGS14. Similar to the RGS16 mutants, replacing the putative R12 subfamily disruptor residues in the corresponding positions of RGS4 reduced GAP activity (Fig. 5C). Substituting the RGS4 Glu¹⁶¹-Lys¹⁶⁵ motif, which corresponds to RGS16 Glu¹⁶⁴-Lys¹⁶⁵, with the corresponding RGS14 putative disruptor residues (to generate RGS4 E161K-K162F, the EK>KF mutant) substantially reduced GAP activity. Adding a substitution of the unique RGS4 Arg¹⁶⁶, with its RGS14 counterpart to generate the triple mutant, RGS4 E161K-K162F-R166A (EKR>KFA), further reduced GAP activity. The k_{GAP} of this RGS4 triple mutant (0.2 min⁻¹) is similar to the k_{GAP} that we measured for WT RGS14 (0.3 min⁻¹; Fig. 1A). In comparison, mutating the RGS4 S&C residue Asn¹²⁸, which is essential for RGS catalytic activity (18, 21, 48), completely abolished RGS4 GAP activity (Fig. 5C).

To test whether RGS16 residues Glu¹³⁵, Glu¹⁶⁴, Lys¹⁶⁵, and Lys¹⁷³, which are the modulatory positions of RGS16 that interact with the Gα helical domain (Fig. 2B), are necessary for its high GAP activity, we mutated all four residues to alanines. The resulting RGS16-Ala₄ mutant had similar GAP activity to that of WT RGS16 (Fig. 6), suggesting that these residues are not essential for the high GAP activity of RGS16. This result indicates that alanines in these positions are permissible for high GAP activity; however, as we showed earlier, substituting the disruptor residues from low-activity RGS proteins, such as R12 family members, was not permissible for high GAP activity.

Replacing the putative RGS18 disruptor residues with their RGS16 counterparts increases GAP activity

To test whether substituting disruptor residues in the low-activity protein RGS18 with their high-activity RGS counterparts removes the negative effect on GAP activity, we replaced the RGS18 disruptor residues with their RGS16 counterparts (Fig. 7). The RGS18 Q186K mutant had increased GAP activity toward Gα_o. The RGS18 H156E-Q186K double mutant had further increased GAP activity, which was comparable to that of WT RGS16. Therefore, these data suggest that replacing these RGS18 disruptor residues with their RGS16 counterparts is sufficient for a complete gain of function.

DISCUSSION

The broad challenge of deciphering protein-protein interaction specificity is particularly relevant to the interactions of RGS proteins with Gα subunits. Because numerous RGS proteins are usually co-expressed in a given cell, identifying the molecular design principles that determine selective recognition of Gα subunits by RGS proteins is essential for understanding which RGS proteins mediate particular physiological functions and for manipulating these interactions with drugs. However, which RGS-Gα interactions occur and which residues encode the specificity of these interactions are mostly unclear, which is partially due to the low sequence identity among RGS domains (as low as 30%). Such low sequence identity increases the difficulty of pinpointing which residues contribute to similar interactions and which residues determine interaction selectivity. However, quantitative structure-based approaches, such as the approach we used here, can pinpoint which residues contribute substantially to interactions across a protein family and guide mutagenesis to redesign RGS interactions with Gα subunits.

Looking beyond the RGS family, specific protein-protein interactions between families of signaling proteins are crucial for the
RGS10 and RGS14 have reduced GAP activity toward Gα. Our results demonstrate that the R12 subfamily members negative design elements by means of interacting with the Gα interactions with particular Gα subunits (18).

However, to achieve high GAP activity, RGS domains also require additional positive and negative design elements across the larger wiring of signaling networks. Useful terms to define structural elements that determine such specific interactions were coined by the protein design field: “Positive design elements” stabilize favorable interactions that strengthen particular protein pairings, whereas “Negative design elements” introduce unfavorable interactions that limit selected interactions between some family members (66, 67). In particular, negative design elements are critical specificity determinants among well-studied examples in protein–protein interactions, such as heterodimeric coiled-coil pairs (68, 69), colicin-immunity protein interactions (70, 71), β-lactamase and its protein inhibitors (72), and Bcl-2 receptors binding to BH3-only proteins (73).

Previous studies identified RGS residues that are crucial positive design elements for RGS GAP function (18, 21, 47, 48, 51, 74). We classified most of these previously studied RGS residues as S&C residues (Fig. 2A). These RGS residues interact with Gα residues adjacent to its catalytic site and presumably have a primary role in accelerating the GTPase activity of a Gα subunit by stabilizing a conformation that is optimal for GTP hydrolysis (1, 12, 21, 48, 49, 74). However, to achieve high GAP activity, RGS domains also require sufficient modulatory residues that function as positive design elements. We had also suggested that modulatory residues encode specific interactions with particular Gα subunits (18).

Here, we found that R12 subfamily “disruptor residues” function as negative design elements by means of interacting with the Gα helical domain. Our results demonstrate that the R12 subfamily members RGS10 and RGS14 have reduced GAP activity toward Gα, compared to the high-activity RGS proteins, such as RGS4 and RGS16. Our structure-based analysis identified three R12 positions as critical for this phenotype. Mutating the corresponding RGS16 and RGS4 modulatory residues to their R12 counterparts reduced the GAP activities of RGS16 and RGS4 to those of RGS10 and RGS14. Because the S&C and modulatory residues of RGS12 are essentially identical to those of RGS14, and in particular, because their putative disrupter residues are identical, we suggest that these RGS domains will have similar GAP activity and specificity and that our results may be applicable to the entire R12 subfamily. Moreover, because mutating these residues in RGS16 to alanines did not reduce GAP activity, we conclude that these positions are not positive design elements in RGS16 but rather play a specific role as negative design elements in the R12 subfamily. Finally, we showed that replacing these negative design elements in RGS18 with their counterparts from RGS16 led to a complete gain of function, further supporting our conclusions that these negative design elements attenuate GAP activity through interactions with the Gα helical domain.

More generally, our energy calculations and structural analysis provide insights into how RGS domains encode specificity toward Gα subunits. Although it was known that RGS interactions with the Gα GTPase domain are central to RGS GAP activity (1, 21, 48, 49) because the GTPase domain contains essentially all of the GTP-binding site, the functional roles of RGS interactions with the Gα helical domain were not clear. Our results show how contacts with the Gα helical domain can govern RGS-Gα interactions; a small number of key disruptor residues that interact with the Gα helical domain can fine-tune RGS GAP activity and determine specificity. Nevertheless, the interaction of these RGS modulatory residues with the Gα helical domain is not essential for high GAP activity, showing that these positions function as negative design elements only. Finally, the approach we used here can be leveraged to uncover additional positive and negative design elements across the larger RGS family and provide tools to rewire RGS interaction in cells and in vivo.

MATERIALS AND METHODS

Protein structures and sequences

We used the following 3D structures in our analysis and visualization of RGS-Gα complexes [with Protein Data Bank (PDB) codes for each structure]: rat RGS4–Gαi1 (PDB ID: 1AGR) (46), human RGS16 (hRGS16)–Gαi1 (PDB ID: 2IK8) (37), mouse RGS16 (mRGS16)–Gαi1 (PDB ID: 3C7K) (51), human RGS1–Gαi1 (PDB ID: 2GTP) (37), human RGS10–Gαi1 (PDB ID: 2IHB) (37), and the monomeric nuclear magnetic resonance (NMR) structures of human RGS14 (PDB ID: 2JNU) and RGS18 (PDB ID: 2JMS) (37). For visualization of the latter structures, we used the first model of the 20 NMR models in the PDB. 3D structural visualization and superimposition were performed with the molecular graphics program PyMOL (http://pymol.org). We used the following RGS domain sequences from the UniProt database (www.uniprot.org/): O43665 (RGS10), O14924 (RGS12), and O43566 (RGS14). Sequences were aligned using the T-Coffee server (http://tcoffee.vital-it.ch/apps/tcoffee/index.html), followed by manual adjustments in Jalview (www.jalview.org) according to our 3D structural comparisons.
Energy calculations to identify RGS residues that contribute substantially to the RGS-\(\alpha\) interactions

We followed a methodology described previously (18) to analyze the per-residue contributions of RGS residues to their \(\alpha\) partner for the following crystal structures of RGS-\(\alpha\) complexes (with PDB codes): human RGS6 (hRGS6–\(\alpha\)1 [PDB ID: 2IK8], mouse RGS6 (mRGS6–\(\alpha\)6 [PDB ID: 3C7K]), RGS4–\(\alpha\)6 (PDB ID: 1AGR), and RGS1–\(\alpha\)1 [PDB ID: 2GTP]). We used the FDPB method to calculate the \(\Delta \Delta G_{\text{elec}}\) of each residue that is within 15 Å of the dimer interface. Residues that contributed substantially to the interaction were defined as those contributing \(\Delta \Delta G_{\text{elec}} \geq 1\) kcal/mol to the interactions (twice the numerical error of the electrostatic calculations) (75). \(\Delta \Delta G_{\text{elec}}\) were calculated as a surface-area proportional term by multiplying the per-residue surface area buried upon complex formation using surff (76) by a surface tension constant of 0.05 kcal/mol per Å² (75). Residues that contributed substantially to binding were defined as those contributing \(\Delta \Delta G_{\text{elec}} \geq 0.5\) kcal/mol to the interactions (namely, bury more than 10 Å² of each protein surface upon complex formation).

Protein expression, purification, and mutagenesis

The RGS4, RGS10, RGS14, RGS16, and RGS18 domains were expressed in the pLIC-SGC1 vector as N-terminally His6-tagged fusion proteins (Addgene). The N-terminally His6-tagged rat \(\alpha\)1 clone was a gift from V. Arshavsky (Duke University). RGS16 mutants were generated with the QuikChange site-directed mutagenesis kit (Invitrogen) with primers designed using the Primer Design Program (www.genomics.agilent.com). An RGS14–to-RGS16 chimera was also generated with the QuikChange site-directed mutagenesis kit by inserting the mutations T29E, E30A, K34T, A38E, R103D, Q105A, A119P, and V122L and by replacing regions Glu76 to Pro80, Arg85 to Asp101, and the mutations T29E, E30A, K34T, A38E, R103D, Q105A, A119P, and V122L and by replacing regions Gln76 to Pro80, Arg85 to Asp101, and 200 μl was transferred to 3 ml of liquid scintillation liquid (PerkinElmer) and analyzed with a Tri-Carb 2810 TR scintillation counter (PerkinElmer). GTPase rates were determined from single-exponential fits to the time courses using SigmaPlot 10.0. We calculated \(k_{\text{GAP}}\) rate constants by subtracting the basal GTPase rate (without RGS protein) from the GTPase rate that was measured in the presence of the RGS protein, as described previously (64).

RGS dose-response analysis

RGS dose-response analysis was performed as in previous studies (52, 63). \(\alpha\) was loaded with 1 mM [\(\gamma\)–32P]GTP for 15 min at 20°C in reaction buffer and then cooled on ice for 5 min. Each assay was initiated by adding 10 μl of GTP protein in different concentrations in assay buffer (5 mM MgCl₂ and 100 μM cold GTP (final concentration) with or without RGS proteins at 4°C. Aliquots were taken at different time points and were quenched with 5% charcoal in 50 mM Na₂H₂PO₄ (pH 3) on ice, which was followed by centrifugation at 12,000 g for 5 min at room temperature. The supernatant (200 μl) was transferred to 3 ml of liquid scintillation liquid (PerkinElmer) and analyzed with a Tri-Carb 2810 TR scintillation counter (PerkinElmer). EC₅₀ values were determined from three-parameter sigmoidal curves with SigmaPlot 10.0.

SUPPLEMENTARY MATERIALS

www.sciencesignal.org/cgi/content/full/11/534/eaan3677/DC1

Fig. S1. The RGS interface with \(\alpha\) subunits is predominantly electrostatic and polar.

Fig. S2. A pair of RGS1 and RGS4 residues contributes favorably to electrostatic interactions with the \(\alpha\) helical domain.

Fig. S3. A chimera of RGS14 and RGS16 exhibits increased GAP activity.

REFERENCES AND NOTES

29. 28.
25.
24.
19.
12.
11.
8.
T. M.
activating proteins for heterotrimeric G-protein

286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.
Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability.
J.
S.
286.

Acknowledgments: We thank L. Barki-Harrington, E. Privman, and E. D. Levy for helpful comments and V. Arshavsky for the Gαs clone. Funding: This work was supported by grants from the Israel Science Foundation (grant numbers 1454/13, 1959/13, and 2155/15), the Israel Ministry of Science, Technology and Space, Israel, and the Italian Ministry of Foreign Affairs (3-10704). The authors acknowledge the contribution of COST Action CM-1207 (GLISTEN) to this work. Author contributions: A.A. designed the research, conducted most of the experiments and structural analysis, analyzed the results, and wrote the manuscript. I.S. conducted structural analysis and some of the experiments and analyzed the results. M.A.-S. conducted experiments, supervised the laboratory work, and analyzed the results. M.K. designed and supervised the research and wrote the manuscript. All authors were involved in the writing of the manuscript and approved the final version. Competing interests: The authors declare that they have no competing interests. Data and materials availability: Plasmids require a material transfer agreement from Addgene. All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.
"Disruptor" residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of G α subunits
Ali Asli, Isra Sadiya, Meirav Avital-Shacham and Mickey Kosloff

Sci. Signal. 11 (534), eaan3677.
DOI: 10.1126/scisignal.aan3677

Designing specificity
Once an agonist binds to its G protein–coupled receptor, GTP replaces GDP on the α subunit of an associated G protein, which then dissociates from its βγ dimer to activate effectors. The GTPase activity of the α subunit returns the G protein to an inactive state, a process that is accelerated by interactions with members of the regulator of G protein signaling (RGS) family. Asli et al. used functional and structural analyses to identify specific amino acid residues that distinguished RGS proteins with low activity toward G α from those with high activity. High-activity RGS proteins that were mutated to contain these "disruptor" residues exhibited reduced inhibitory activity toward the G α subunit. Together, these data suggest that "disruptor" residues within RGS proteins may encode specificity toward G α subunits.
Supplementary Materials for

“Disruptor” residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Ga subunits

Ali Asli, Isra Sadiya, Meirav Avital-Shacham, Mickey Kosloff*

*Corresponding author. Email: kosloff@sci.haifa.ac.il

DOI: 10.1126/scisignal.aan3677

This PDF file includes:

Fig. S1. The RGS interface with Ga subunits is predominantly electrostatic and polar.
Fig. S2. A pair of RGS1 and RGS4 residues contributes favorably to electrostatic interactions with the Ga helical domain.
Fig. S3. A chimera of RGS14 and RGS16 exhibits increased GAP activity.
Fig. S1. The RGS interface with Ga subunits is predominantly electrostatic and polar. (A and B) R4 RGS residues that contribute predominantly to the interaction with Ga subunits are shown as spheres. (A) R4 RGS residues are colored by the type of their energy contribution as follows: nonpolar (green), main-chain electrostatic (yellow), side-chain electrostatic (orange), main-chain electrostatic and nonpolar (light blue), side-chain electrostatic and nonpolar (magenta). The four representative structures of the high-activity R4 subfamily are superimposed with RGS domains shown as ribbon diagrams (wheat) viewed through the transparent surface of the Ga
t subunit. (B) Residues are colored according to their R4 RGS physicochemical properties as follows: basic residues (dark blue), acidic residues (red), polar residues (orange), all other residues (green).
Fig. S2. A pair of RGS1 and RGS4 residues contributes favorably to electrostatic interactions with the Gα helical domain. The complexes of RGS1-Gαi1 and RGS4-Gαi1 were superimposed on the structures of human RGS16–Gαi1 and mouse RGS16–Gαo. The RGS domains of RGS1 and RGS4 (cyan) and Gα subunits (orange and brown) are shown as ribbon diagrams. The Gα helical domain is orange. Contributing residues are shown as sticks, and favorable electrostatic interactions and hydrogen bonds are marked with dashed lines. For only the RGS16 interactions with Gα, see Fig. 4A.
Fig. S3. A chimera of RGS14 and RGS16 exhibits increased GAP activity. k_{GAP} constants for WT RGS10, WT RGS14, and the following mutants: RGS10-to-RGS16 mutants K131E-Y132K (KY>Ek) and Q103E-K131E-Y132K (QKY>EEK); RGS14-to-RGS16 mutants K114E-F115E (KF>Ek) and Q86E-K114E-F115K (QKF>EEK); RGS14-to-RGS16 chimera (14>16 chimera) with the following replacements: T29E, E30A, K34T, A38E, Gln76 to Pro80, Arg85 to Asp101, R103D, Q105A, Leu107 to Asn111, A119P, V122L. In this chimera, all RGS14 residues that can affect regions αV to αVI and αVII, which include the RGS14 disruptor residues Gln86, Lys114, Phe115, were substituted with their RGS16 counterparts. The k_{GAP} constants were calculated as described in Fig. 1. Data are means ± SEM of at least three independent biological replicates.