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1. Introduction

Proteins are characterized by their amino acid sequence,
their structure, and their function. A protein sequence
folds into a unique structure, and similar sequences fold
into similar structures. There are, however, exceptions to
these rules, as detailed below. The important unit of struc-
ture is a domain – generally a single stretch of sequence
(50–300 amino acids long) that interacts weakly with ad-
jacent domains. The function of a protein is associated
with one or more domains. In many ways, the three-di-
mensional structure of proteins has been considered the
gold standard for understanding the function of a protein,
yet extracting functional information from structures can
be a considerable challenge.

The sequence, structure, and function of a protein are,
of course, related to one another. The sequence folds into
a particular three-dimensional structure, which in turn en-
ables the protein to carry out its function. Scholars often
refer to the set of all possible protein sequences as protein
sequence space, to the set of all protein structures as
structure space, and to function space.[1] These are abstract
spaces, which describe different entities: sequence space –
strings of letters from the 20-letter amino-acid alphabet;
structure space – compact, self-avoiding chains in three-
dimensional space; and function space – various defini-
tions of molecular functions. Within these spaces, we can
define different relationships among their entities (e.g.,
the distance between two sequences). Then, we can study
the properties of these spaces and the relationships be-
tween them.

One central and determining relationship between the
sequence, structure, and function of proteins is their evo-

lution from common ancestors. To study protein evolu-
tion, we measure the similarity among the sequences,
structures, and functions of current-day proteins and
deduce evolutionary relationships from these measure-
ments. Very similar sequences hint at a common ancestry.
Typically, medium-sized domains are considered homolo-
gous if more than 25% of their residues are identical.[2]

When examining more remote homologues, whose se-
quences already diverged so that their similarity is too
minor to be detected by sequence alone, we often rely on
significant structural and functional similarity as evidence
for homology.[3] This approach assumes that the diver-
gence of structure and function is slower than that of se-
quence. Thus, several studies have attempted to identify
what level of sequence similarity implies structural simi-
larity. In their 1986 seminal paper, Chothia and Lesk
posed this question, and identified the correlation be-
tween sequence identity and homology mentioned
above.[4] The same question was later revisited by Sander
and Schneider,[5] as well as by Rost.[6] In broad strokes, all
of these studies considered a set of protein pairs of

Abstract : The three-dimensional structures of proteins are
often considered fundamental for understanding their func-
tion. Yet, because of the complexity of protein structure, ex-
tracting specific functional information from structures can
be a considerable challenge. Here, we present selected ap-
proaches and tools that we have developed to study and
connect protein sequence, structure, and function spaces.
First, we consider a global perspective of structure space

and view the protein data bank (PDB) as a database. We
highlight challenges in searching protein structure space
and in using the PDB as the starting point for computation-
al structural studies. Then we describe a function-oriented
view and show examples of how multiple protein structures
can be used to extract insights about the function and spe-
cificity of proteins at the family level.

Keywords: bioinformatics · molecular recognition · protein structures · structure-activity relationships

[a] R. Kolodny
Department of Computer Science
The University of Haifa
Mount Carmel, Haifa, 31905 (Israel)
e-mail: trachel@cs.haifa.ac.il

[b] M. Kosloff
Department of Human Biology
The University of Haifa
Mount Carmel, Haifa, 31905 (Israel)
e-mail: Kosloff@sci.haifa.ac.il

Isr. J. Chem. 2012, 52, 1 – 10 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim &1&

These are not the final page numbers! ��

Review



known sequence and structure from the PDB, and ana-
lyzed the relationship between their sequences and struc-
tural similarity. The fact that studies of this sort are based
on comparisons within the PDB motivated us to develop
the methods for sophisticated searches in the PDB and
for the non-trivial comparisons across multiple protein
structures that are detailed below.

Here, we handpicked several approaches and tools to
study and connect protein sequence, structure, and func-
tion space on two separate levels – global and function-
oriented. At the global level, we view the PDB as a data-
base, and highlight some of the challenges in searching
protein structure space and in using the PDB as a starting
point for computational structural studies. First, we de-

scribe a basic component that underlies searching protein
structure space – the comparison of two protein struc-
tures. Then, we describe characterizations of the PDB,
which are important when designing a fast structural
PDB search, and methods for quick and accurate search-
es. At the function-oriented level, we discuss how struc-
ture search and comparison can be used to predict and in-
vestigate protein function and specificity, and highlight se-
lected approaches that show how protein structure can be
used to extract insights about the function and specificity
of proteins at the family level.

2. Protein Structural Alignment – Comparing the
Geometry of Two Protein Structures

Scientists have long sought to develop tools that compare
protein structures and accurately quantify their similarity.
Two structures can be compared, and their similarity
quantified, via a procedure called structural alignment –
the structural analog of sequence alignment. The input to
a structural alignment program is two protein structures,
which can differ in size. A successful output is two match-
ing sub-structures of equal size and similar geometry. Al-
ternatively, a structural alignment program can report
that the two structures are geometrically unrelated. In ad-
dition, the structural alignment program returns a quanti-
tative measure of the similarity of the two equally sized
sub-structures.

The challenge of structural alignment can be viewed as
an optimization problem of specialized geometric
scores.[7] As there is no agreed upon geometric score in
the field, different methods rely on different scores, and
different programs use different heuristics to optimize
these scores. In general, geometric scores try to minimize
the Euclidean distance between corresponding residues,
after the sub-structures are optimally superimposed on
one another, e.g., by minimizing the Root Mean Square
Deviation (RMSD) of the sub-structures. Importantly, to
avoid very short alignments (and in particular alignments
of length one, which always have an RMSD of zero), geo-
metric scores also include a component that favors long
alignments. Other parameters can also be used, e.g., the
number of gaps in the alignment and/or secondary struc-
ture agreement.[7,8]

Given a geometric score, quickly finding the superposi-
tion and sub-structures that optimize it is a non-trivial
technical challenge. Kolodny and Linial[9] proved that the
optimal solution could be found in polynomial time, for
a class of scores that are amendable to the computational
technique of dynamic programming. Thus, they refuted
the idea that structural alignment is a non-deterministic
polynomial-time-hard (NP-hard) problem. NP-hard de-
scribes problems that (it is believed by the computer sci-
ence community) can be solved correctly only by using an
impractical amount of computational time. For such prob-

Mickey Kosloff is a biochemist and
computational biologist at the Depart-
ment of Human Biology in the Univer-
sity of Haifa. He earned his B.Sc. in
chemistry at the Hebrew University,
where he was trained as a biochemist
by the late Prof. Zvi Selinger and re-
ceived his M.Sc. and Ph.D. in structural
and molecular biochemistry. He then
sought post-doctoral training in com-
putational biology with Prof. Barry
Honig at Columbia University, followed
by combined experimental and compu-
tational work with Prof. Vadim Arshavsky at Duke University. His
lab focuses on deciphering how protein structure encodes interac-
tion specificity at the family level, which, in turn, determines the
connectivity of signal transduction networks. His main research ac-
tivities include understanding the molecular basis for protein-pro-
tein interaction specificity among large protein families, redesigning
and engineering proteins as tools to perturb and modulate signal-
ing networks in vivo, and leveraging these insights and tools to ad-
dress a critical need in drug design – the pinpointing of drug bind-
ing sites that take family-level specificity into account.

Rachel Kolodny is a computational biol-
ogist at the Department of Computer
Science in the University of Haifa. She
earned her B.Sc. and M.Sc. at the
Hebrew University, working with Prof.
Nati Linial and Prof. Tali Tishby in the
computer science department. Then
she moved to California and studied
with Prof. Michael Levitt and Prof. Leo-
nidas Guibas. Her Ph.D. from the Stan-
ford University School of Engineering
focused on how to model and compare
protein structures. She then sought
post-doctoral training with Prof. Barry Honig at Columbia Universi-
ty, where she met Dr. Kosloff, and they began their fruitful collabora-
tion. Dr. Kolodny’s research interest is the investigation of the prop-
erties of protein sequence, structure, and function spaces, and their
inter-relationships (between structure and function, and between
sequence and structure). In particular, she develops useful compu-
tational tools to aid in this task.

&2& www.ijc.wiley-vch.de � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Isr. J. Chem. 2012, 52, 1 – 10

�� These are not the final page numbers!

Review R. Kolodny and M. Kosloff

http://www.ijc.wiley-vch.de


lems, the only (current) course of action is using heuris-
tics, as opposed to finding an optimal solution. Fortunate-
ly, the Kolodny and Linial study showed that structural
alignment does not fall into this class of problems. The
method used by Kolodny and Linial relies on exhaustive
exploration of the space of rigid transformations, and,
specifically, the exploitation of the fact that proteins
reside in three-dimensional Euclidean space. However,
their algorithm is far too slow for practical purposes, as
its run time is proportional to the sequence lengths to the
eighth power.[9]

Instead, one can use one of the many heuristic structur-
al alignment programs, e.g., STRUCTAL,[10] CATHE-
DRAL,[11] CE,[12] MAMOTH,[13] Matt,[14] and SSM.[15] For
reviews of structural alignment methods, see reference
[16]. Given a geometric score, evaluation of the different
solutions found by different programs, followed by selec-
tion of the best alignment, is straightforward. This fact
makes it possible to build a combined effort scheme,
using several structural alignment programs.[7] That is, we
can use several structural alignment methods for two
input structures (albeit this does require more computa-
tional time), and thereby reduce the rate of false nega-
tives (i.e. , cases in which one or more of the heuristic pro-
grams failed to identify true geometric similarity of sub-
structures).

3. Comparing Equally Sized Protein (Sub-)
Structures

A related computational task is the comparison of two
protein structures or sub-structures whose sequences are
identical or related. In this case, the input for the geomet-
ric comparison is two structures of the same size, N, and
the alignment is trivial: the ith residues in each structure
are aligned one to another, for 1� i�N. We emphasize
that since the alignment is known, this task is very differ-
ent from the one in structural alignment. This task is most
often and routinely addressed in the Critical Assessment
of Techniques for Protein Structure Prediction (CASP)
experiments, which evaluate the similarity of a predicted
model to an experimentally determined structure.[17]

There are several methods that measure structural simi-
larity between two structures of equal length. The most
straightforward measure is RMSD. Unfortunately, RMSD
is notorious for being sensitive to outliers, which poses
a particular problem in the context of CASP. Thus, other
measures were developed and are also used, including
GDT_TS, GDT_HA,[18] TM_Score,[19] and MaxSub.[20]

GDT scores calculate the average percent of the residues
in the two structures whose C-alpha atoms fall within sev-
eral cutoff distances (e.g. the GDT_TS score variant uses
cutoff values of 1 �, 2 �, 4 �, and 8 �). TM_Score sums
1/(1+(d/d0)

2), where d is the distance between corre-
sponding C-alpha atoms, and d0 is a normalizing factor.

The final score is then normalized by 1/L, where L is the
size of the sub-structures. For such measures, scholars
identified thresholds that separate clear-cut cases of simi-
lar and non-similar structures.[5,21] Thresholds for GDT_
TS can be found in reference [22] and those for TM_
Score in reference [23]. Thus, one can measure the
RMSD, GDT_TS, and TM_Score of two matching sub-
structures and use these thresholds to label the aligned
sub-structures as “similar” or “non-similar.”

4. Reduced Versions of the PDB

As a first step in many studies that use the PDB, re-
searchers generate reduced sets (often referred to as non-
redundant subsets) of this database. There are two impor-
tant reasons to use reduced sets: (1) They are far smaller,
and thus the use of structural alignment to compare
a query structure to all the structures in the reduced set is
computationally feasible (albeit still slow/computationally
demanding). (2) It has been proposed that these sets are
more representative of the entire set of protein structures
present in the universe (hopefully correcting for the
biased sampling of experimental structure determination).
There are specialized programs for identifying representa-
tive sets from the PDB, notably PDBSelect,[24] and
PISCES.[25] However, when using only the sequences of
the proteins to generate a non-redundant version of the
PDB, one makes an implicit assumption – that proteins of
similar sequences have similar structures. Likewise, when
predicting protein structure using homology modeling, if
a template structure for modeling a target sequence is se-
lected by sequence alone, this implicitly assumes that all
sequence-similar templates are equivalent. Yet, the as-
sumption of similar sequences implying similar structures
is not always true. In particular, proteins can adopt
widely different structures to accommodate the execution
of a function (e.g., induced fit), or due to a changing envi-
ronment (e.g., pH change).

5. Identifying Numerous Sequence Similar yet
Structurally Dissimilar Pairs in the PDB

To test this assumption and to determine the extent to
which sequence similarity ensures structural similarity,
we[26] carried out sequence-based structural superposi-
tions (i.e., optimal superimposition of the residues that
are aligned by sequence alone) of a large number of pro-
tein pairs. We identified thousands of examples where
two proteins that are similar in sequence have structures
that differ significantly from one another (see Figure 3 in
reference [26]). These structural differences usually have
a functional basis, often relating to conformational
changes that are required for the function of the proteins.
The number of such identified protein pairs and the mag-
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nitude of their structural dissimilarity depend on the ap-
proach that is used to calculate the differences. In particu-
lar, we showed that the ubiquitously used geometry-based
structural alignments will underestimate both the number
of structurally dissimilar pairs and the magnitude of the
structural dissimilarity (see Figure 1).

We then focused on protein pairs that share more than
99% sequence identity, yet have an RMSD greater than
6 �. Namely, the protein pairs in this subset are essential-
ly identical, so the structural dissimilarity cannot be at-
tributed to low levels of sequence identity. In almost all
cases, the biological function dictated a conformational
plasticity that resulted in two or more distinct structures.
Figure 2 lists the distribution of causes that account for
the structural differences we observed for each pair in
this subset. The full annotated subset is available online
at (http://mt.cs.haifa.ac.il/seqsimstrdiff/seqsimstrdiff_local.
htm), and includes the cause for each pair. Following this
study, additional examples of protein pairs with similar
sequences and non-similar structures were identified by
Burra et al.,[27] and cases of conformational changes due
to mutations were discussed by Murzin.[28]

6. Filter and Refine for Searching a Database of
Protein Structures

As an alternative to relying on a reduced representative
set of the PDB, scholars developed the filter and refine
paradigm to speed up structural searches in the entire
PDB (see Figure 3).[29] A filter method quickly sifts
through a large set of structures (e.g., the complete
PDB), and selects a small candidate set. Then, in the
refine step, these candidates can be structurally aligned
by a more accurate, but computationally expensive, struc-
tural alignment heuristic method. Filter methods gain
their speed by representing structures abstractly – typical-
ly as vectors – and comparing these representations
quickly. The vectors representing the structures in the
PDB are usually calculated and stored in a pre-processing
step. Then, given a query protein structure, the filter
method calculates its corresponding vector and compares

Figure 1. Structure alignment can underestimate the dissimilarity
of two proteins compared to sequence-based structure superposi-
tion. To demonstrate this, we consider the case of two conforma-
tions of the same protein (i.e. , the sequence identity of the two
structures is 100 %), superimposed one on top of the other (A).
The sequence alignment of these proteins is shown in (B), and
throughout the alignment the ith residue in the first protein
matches the ith residue in the second protein. The RMSD calculat-
ed for the aligned matched residues will be high. On the other
hand, the structural alignment of the two proteins (C) will only
align the parts with similar geometry. Thus, the loops that differ
will be matched with gaps. Consequently, the RMSD calculated for
the residues matched in the structural alignment will be low, lead-
ing to the false conclusion that the two structures are geometrical-
ly similar.

Figure 2. The Venn diagram shows the distribution of causes for
the structural dissimilarity within pairs, ordered by frequency: (1)
Inter-chain (48 structure) – different quaternary protein-protein in-
teractions (including homomeric interactions). In the majority of
cases this involves an additional protein chain, which interacts with
the relevant chain in only one of the two structures in a pair. A mi-
nority of cases involved dissimilar interactions with similar binding
partners (usually with an additional cause). Domain-swap is a sub-
category of inter-chain interactions, where only one of the struc-
tures in a pair is domain-swapped. In rare instances both structures
are domain-swapped, but with a different interface. (2) Protein-
ligand – mostly a ligand-bound protein vs. its apo form. By “li-
gands,” we refer to either small molecules, which are non-protein/
non-nucleic acid, or short (<15 residues) peptides. (3) Solvent –
significant differences in the crystallization conditions (e.g. different
pH or salt concentrations). (4) Alt-conformations – alternative crys-
tallographic conformations of the same protein. Four of these
cases were asymmetric homomers, for which inter-chain is an addi-
tional cause. One instance corresponded to the same protein crys-
tallized in different space groups, and another corresponded to
two alternative fits to the same crystallographic data. (5) Intra-
chain (18 structure) – the presence/absence of part of a protein
chain in one of the structures, a point mutation (combined with an
additional cause), or, in two instances, oxidized vs. reduced intra-
chain S-S bonds. (6) Protein-DNA/RNA – a DNA-bound protein vs.
its apo form. One instance involves a restriction enzyme (BamH)
bound to specific vs. non-specific DNA sequences. n refers to the
number of occurrences of each cause, out of the 66 separate cases
examined.
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it to all PDB derived vectors. Since the comparison of
two vectors is a very fast computation, even a na�ve com-
parison of all vectors, one by one, is sufficiently fast to
allow structural searches against the full-sized PDB.
Vector representations have an additional advantage,
which holds promise for an even faster identification of
similar structures: they are amendable to storage in in-
verted indices. An inverted index, much like a book
index, is a data structure that enables fast identification
and retrieval of neighbors, even in huge datasets (e.g., the
index used by Google to allow fast searches of the
WWW).[30]

Many different filter methods for protein structure
have been developed. One such method, PRIDE, repre-
sents a structure by the histograms of diagonals in its in-
ternal distance matrix.[31] Another method, developed by
Choi et al.,[32] represents a structure by a vector of fre-
quencies of local features in its internal distance matrix.
Inspired by knot theory, Rçgen and Fain devised the
Scaled Gauss Metric (SGM) method, which represents
a structure by a vector of 30 global topological measures
of its backbone.[33] Zotenko et al. represent a protein
structure by a vector of the frequencies of patterns of sec-

ondary structure element (SSE) triplets.[34] There are also
methods by Zhang et al.,[35] 3D-Blast,[36] YAKUSA,[37]

and a method by Sacan et al.[38]

Budowski et al. presented FragBag, a filter method for
identifying structurally similar domains.[39] In FragBag,
each domain is represented as a fixed-size vector that de-
scribes the composition of local backbone fragments in its
structure. The structural distance between two domains is
approximated by the distance between their correspond-
ing vectors. To calculate the FragBag representation of
a protein domain, one needs a library of L fixed length
fragments (e.g., the libraries in reference [40]). Each seg-
ment along the protein backbone is then described by its
best approximation from the library of fragments. This is
essentially a discretized description of the dihedral angles
along the protein backbone. The FragBag vector does not
record the order of fragments along the backbone. Bor-
rowing terms from database searches in computer science,
it is, therefore, a bag, rather than a sequence of fragments.
Thus, the FragBag vector has L entries, and the ith entry
is the number of times the ith fragment is the approxima-
tion fragment for any backbone segment (see Figure 4).

Budowski et al. measured how well different filter
methods identify structural neighbors, and demonstrated
that FragBag performs better than previous filter meth-
ods, and, surprisingly, performs comparably to computa-
tionally expensive structural alignment methods. The
challenge for filter methods is ranking truly structurally
similar proteins in the database high on their candidate
list. Thus, to evaluate the performance of a filter method
for a particular query protein structure, it is appropriate
to use receiver operating characteristic (ROC) curve
analysis, and to rely on a gold standard that determines
which domains in the database are structural neighbors of
the query. Budowski et al. used a stringent gold standard:
structural neighbors found by a combined best-of-six
structural alignment method. They considered the aver-
age performance over a test set of almost 3,000 CATH

Figure 3. A schematic description of the filter and refine paradigm.
The upper panel depicts a na�ve search in the PDB with a query
domain – compared to all domains in the PDB using structural
alignment (resulting in an infeasible computation). The lower panel
depicts a faster alternative: given a query domain, a fast filter step
ranks the PDB domains according to how similar they are to the
query. Then, in a refine step, slower but accurate structural align-
ment is used to compare the query domain to the top ranking do-
mains only, thereby identifying domains in the PDB that are truly
similar to the query.

Figure 4. Description of a protein domain as a FragBag vector. As
an example, we consider a library of six fragments (A). Each (over-
lapping) contiguous segment in the backbone of the domain is as-
sociated with its most geometrically similar library fragment (B).
The structure of the protein domain is represented by a vector
whose entries count the number of times each library fragment
appears in this collection (C).
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domains[40] , and compared the rankings of FragBag filters
using different fragment libraries of varying sizes and
fragment lengths, and different measures of vector simi-
larity. Then, they compared their top performer with the
following rankings: (I) based on BLAST E-values, (II)
previous filter methods: SGM, Zotenko et al. , and
PRIDE, and (III) the structural alignment methods
STRUCTAL, CE, and SSM. As expected, the structural
alignment methods performed best, followed by the filter
methods, and then the sequence alignment method.
Among the filter methods, FragBag performed best. Sur-
prisingly, FragBag performed on par with the accurate,
yet computationally expensive, structural alignment meth-
ods.

7. The Advantage of Fixed Representation of
Protein Structures for Investigating the
Organization of Protein Structure Space

Recently, Osadchy and Kolodny showed that the fixed-
size vector representations of protein structure could also
be used to draw maps of protein structure space and to
investigate the relationship between protein structure and
function.[41] Maps of protein structure space are visual
representations of the space of all protein structures, and
were previously studied by Orengo et al. ,[42] Holm and
Sander,[43] and by Kim and colleagues.[44] Each structure is
represented by a point (in a two- or three-dimensional
representation), and the distance between any two points
is an approximation of the structural distance between
their corresponding structures. (Of course, the structural
distance depends on the particular mapping method
used.) The points are then colored according to some
property, e.g., the SCOP class of the protein. Such maps
provide an overview of structure space that can comple-
ment hierarchical classifications such as SCOP[45] and
CATH.[46]

To calculate maps of structure space, a computational
procedure called Multi Dimensional Scaling (MDS) is
used. MDS calculates a matrix, which maps points repre-
senting protein structures onto coordinates in three- (or
two-) dimensional space. This matrix is calculated from
a higher-dimensional matrix holding the structural simi-
larities between all pairs within these structures. Impor-
tantly, calculating the all vs. all MDS matrix of many
structures is a very expensive (even infeasible) computa-
tion for a large number of structures (e.g., a few thou-
sand), and this places an effective limit on the number of
protein structures in such a map.

To create maps of structure space based on a fixed-size
vector representation, an equivalent, yet far faster, com-
putational procedure can be used – Principal Component
Analysis (PCA).[47] Osadchy and Kolodny used this more
efficient procedure to map a very large set (>30,000) of
protein domains. This allowed the study of properties

such as structural density and functional diversity, which
are defined at each point of structure space through the
collection of structures in the vicinity of that point. The
study of functional diversity is relevant for protein func-
tion prediction based on structure. By coloring the maps
according to the values of these properties, their charac-
teristics can be visualized across structure space.

The maps of the functional diversity across protein
structure space revealed an unexpected relationship be-
tween structure and function: structure space has a region
of high functional diversity.[41] As expected, the high func-
tional diversity region includes the prototypic example of
a multifunctional super-family – TIM barrels – but also
includes many other protein folds. It consists mainly of
alpha/beta structures, which are known to be the most an-
cient proteins.[48] The maps suggest that protein function
prediction from global structure similarity is a very diffi-
cult task for structures that fall in the high functional di-
versity region.

One strategy for protein function prediction is to iden-
tify protein homologues of known function that have sim-
ilar sequences and structures, and to transfer their func-
tions to the target protein.[49] However, there are cases
when no homologues can be identified based on se-
quence, and then one must resort to global structure-
based function prediction. Osadchy and Kolodny[41] ana-
lyzed the relationship between the success of function
predictions from global structure similarity and the loca-
tion of the target protein in structure space. To do this,
they relied on the dataset by Watson et al.[50] who predict-
ed the function of 90 proteins from global structure simi-
larity (using the structural alignment program SSM[15])
and assessed if the predictions were successful or not.

Function predictions from global structure similarity by
Watson et al.[50] were more successful in regions of low
functional diversity than in regions of high functional di-
versity. This was quantified by dividing the proteins into
two sets, according to their functional diversity, and com-
paring the success rate in each set. The first set consists
of 35 proteins in high diversity (�45) vicinities, and the
second consists of 55 proteins in low diversity (<45) vi-
cinities. (The details of the measure of function diversity
can be found in reference [41].) Among the high diversity
proteins, only 43 % of the predictions were correct, signif-
icantly lower than the 67 % of correct predictions for the
low diversity proteins (p=0.021 in a one-sided, two-
sample proportion test). Indeed, this is also apparent
from a map of successful/unsuccessful predictions within
protein structure space (Figure 14S in reference [41]), in
which the more successful predictions lie in the low func-
tional diversity regions.

More generally, predicting protein function from global
structure similarity is a challenging problem that is far
from being solved. Therefore, functional diversity maps
can be useful in providing reliable confidence measures
for structure-based function predictions, and, in particu-
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lar, in identifying cases where such prediction is unrelia-
ble.

8. Extracting Specific Function by Comparing
Multiple Structures

In contrast to the limitation of global function prediction
from structure, a focused comparison of multiple struc-
tures enables a deeper insight into function and specificity
across a family of proteins. In particular, and as detailed
above, comparisons of different protein structures are
commonly carried out by superimposing coordinates of
protein backbones. However, when the objective is analy-
sis of similarities and differences in the active sites of dif-
ferent enzymes, there is an inherent problem in using the
same domains for the superimposition.

To bypass this problem, Kosloff and Selinger used
a comparative approach, termed Substrate Directed Su-
perImposition (SDSI). This approach entails the superim-
position of multiple protein-substrate structures using the
coordinates of the comparable substrates, exclusively.
SDSI, therefore, provides an unbiased comparison of the
active site environment from the substrate�s point of
view. In this work, SDSI was applied to various G-protein
structures, in order to dissect the mechanism of the
GTPase reaction that controls the signaling activity of
this important family.[51] SDSI indicated that dissimilar G-
proteins stabilize the transition state of the GTPase reac-
tion in a similar fashion. This observation supported the
commonality of the crucial step in this reaction – a reor-
ientation of two critical residues, an Arginine and a Gluta-
mine. Additionally, SDSI ascribed the catalytic inefficien-
cy of the small G-protein Ras to the high flexibility of its
active site, and downplayed the possible catalytic roles of
the highly conserved Lys16 residue in Ras GTPase. This
study also demonstrated that in contrast to all other
Gly12 Ras mutants, which are oncogenic, the Gly12 to
Pro mutant does not interfere with the catalytic orienta-
tion of the critical Glutamine. This may explain why this
mutant has a higher rate of GTP hydrolysis and is non-
transforming.

Another advantage of SDSI is its ability to accurately
compare divergent structures that, nevertheless, bind
comparable ligands. For example, SDSI reveals unexpect-
ed similarities in the divergent catalytic machineries of G-
proteins and UMP/CMP kinase (Figure 5).

A somewhat different approach, which used multiple
structure comparison to understand family-level specifici-
ty, looked at Glutathione S-transferases (GSTs), which
comprise a diverse super-family of enzymes found in or-
ganisms from all kingdoms of life. These enzymes are in-
volved in diverse processes, notably small-molecule bio-
synthesis and detoxification, and are frequently used in
protein engineering studies and as biotechnology tools.
Because the GST super-family is very diverse, GSTs have

been subdivided into an ever-increasing number of sub-
families, or classes, associated with different functionali-
ties and enzymatic specificities. This classification has
usually been based on a combination of criteria, such as
biochemical properties, primary, tertiary, and quaternary
structure, and immunological reactivity.

Through the use of a multiple structural comparison of
representatives from different GST classes, Kosloff et al.
identified local structural signatures that made it possible
to distinguish between different GST classes (Figure 6).[52]

Most of these structural signatures consist of single resi-
dues or short, but not necessarily contiguous, structural
motifs. Importantly, these structural signatures have cor-
responding functional significances, such as differences in
catalytic properties or selective dimer formation, only be-
tween members of a specific GST class. This approach al-
lowed the classification of novel GST proteins based on
structure alone, without requiring additional biochemical
or immunological data. It was validated by application to
the high-resolution X-ray structure of Atu5508, a putative
GST from the pathogenic soil bacterium Agrobacterium
tumefaciens (atGST1, PDB id 2FNO). This analysis sug-
gested that atGST1 defines a new GST class, distinct
from previously characterized GSTs, both in structure
and in function.

Note that a central limitation to these approaches is
the availability of sufficient structures of good resolution
to enable such comparisons. However, the ever-increasing
size of the PDB and in particular the increasing availabili-
ty of multiple representatives of diverse members of large
protein families, enable the application of these ap-
proaches to more biological problems.

Figure 5. SDSI of the transition state structures of Ras (cyan) and
UMP/CMP kinase (UMPk) (purple). A similar conformation of the P-
loops (not shown) and P-loop lysines (residues 16 in Ras and 19 in
UMPk) is seen in the two structures. The switch II domain in Ras
and the LID and NMB binding domains (not shown) in UMPk have
no correlated domains in the corresponding structure. Yet, the ori-
entations of the functional groups of Gln61 (Ras) and Arg789
(RasGAP) relative to the substrate are highly similar to those of
Arg148 and Arg131 (UMPk) respectively, suggesting a comparable
catalytic role.
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9. Deciphering Family-Level Specificity by
Integrating Structure-Based Energy Calculations
with Functional Assays

Intracellular signaling requires that protein-protein inter-
actions be tailored to different signaling cascades, with
either broad or narrow specificities. Understanding the
basis for such selectivity is one of the major goals in
signal transduction research. Yet, apart from a few repre-
sentative examples, little is known of how interaction spe-
cificity is determined within large protein families. Cur-
rently, structure-based computational methods are not
able to accurately predict quantitative properties, such as
protein-protein binding affinities. On the other hand,
while quantitative experimental comparisons offer superi-
or accuracy, expanding such comparative approaches to
an entire protein family is extremely labor intensive, and
will rarely yield mechanistic insights at the resolution of
individual residues.

As a model system for this problem, Kosloff et al. stud-
ied the interactions of heterotrimeric G-proteins with reg-
ulators of G-protein signaling (RGS) proteins.[53] RGS
proteins function as GTPase activating proteins (GAPs)
by turning G-proteins “off” and thus determining the du-
ration of G-protein mediated signaling. The GAP mecha-
nism of RGS proteins is particularly intriguing because,
unlike other GAP proteins, RGS proteins position the
catalytic machinery of G-proteins allosterically. G-pro-

teins and RGS proteins have also been implicated in
many diseases and are promising drug targets. Thus, these
protein families are a major focus of both basic and ap-
plied research. Nevertheless, elucidating what determines
the shared interactions or distinct specificities of these
families is a difficult undertaking. Currently, computation-
al methods are not able to predict either RGS-G-protein
binding affinities or GAP activities. The alternative – an
experimental comparison across these families – is
a daunting task that requires testing an exorbitant
number of mutants, due to the significant sequence varia-
bility among family members.

In order to understand how the structure of RGS pro-
teins encodes their common ability to inactivate G-pro-
teins and mediates their selective G-protein recognition,
Kosloff et al. developed a new approach that integrates
structure-based computations with experiments.[53] This
approach combined a biochemical “benchmark” of the
ability of 10 RGS domains to inactivate a G-protein with
a comparative structural and energetic analysis. The latter
calculated the net electrostatic/polar energetic contribu-
tions (DDGelec) of each residue to the interaction with the
cognate protein partner, by using a variant of in silico
mutagenesis – perturbation of the charges of each resi-
due.[54] This entailed either neutralizing a residue�s back-
bone and side chain or neutralizing the side chain only,
thereby differentiating between side-chain vs. main-chain
energetic contributions. Electrostatic energies were calcu-
lated using the Finite Difference Poisson-Boltzmann
method (as implemented in the DelPhi program).[55] Non-
polar energetic contributions (DDGnp) were calculated as
a term proportional to surface-area, by multiplying the
per-residue surface area buried upon complex formation
(using surfv[56]) by a surface tension constant of 0.05 kcal/
mol/�.[54] Energetically significant residues were defined
as those contributing DDGelec or DDGnp�1 kcal/mol to
the interactions.

To reduce false positives and negatives, Kosloff et al.
introduced a consensus approach across the eight avail-
able structures, which substantially improved the accuracy
of their predictions.[53] Residues thus determined to con-
tribute substantially to protein-protein interaction were
mapped onto a structure-to-sequence map, thereby pre-
dicting which RGS residues are essential for function and
which residues can modulate specific interactions with the
cognate G-protein (Figure 7). This map revealed that, in
addition to previously identified conserved residues, RGS
proteins contain another group of variable modulatory
residues, which reside at the periphery of the RGS-
domain/G-protein interface, and fine-tune G-protein rec-
ognition. Importantly, this residue-level map provides
a shortcut that, once validated experimentally, enables
the understanding of specificity, as well as its redesign,
across additional family members.

These predictions were then used to redesign RGS pro-
teins with altered function and specificity by site-specific

Figure 6. GST class-specific motifs shown in the context of a multi-
ple structure alignment of representative GSTs. The Ca trace of
atGST1 is colored red and all other GSTs are shown in grey. The
seven motifs that define the various GST classes are labeled.
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mutagenesis. Function was impaired in high-activity
RGS4 and RGS16 and completely restored to low-activity
RGS17 and RGS18. This approach was also applied to
a completely different system – the interactions of colicin
E7 with its inhibitory immunity proteins, a well-estab-
lished model for studying protein-protein interaction spe-
cificity[57] – revealing novel specificity determinants.

10. Summary and Outlook

Here, we touched upon some of the challenges in using
the PDB as a starting point for studying structure and
function spaces, and presented some of the computational
approaches we have developed for the study of protein
sequence, structure, and function, and the connections
among them. The database of solved proteins structures –
the PDB – is rapidly increasing in size and currently
holds more than 85,000 structures. In part, this increase in
size is due to the high-throughput technologies for pro-
tein structure determination that have been introduced in
recent years. However, these new technologies have also
led to a dramatic increase in the number of proteins with
known structures, yet unknown molecular functions.[58] To
characterize these new structures, and more generally, to
access this large dataset in a meaningful way, we need
fast and accurate search methods. In this review, we used
the general-purpose term “search” for (various) tasks
that, given a query protein structure or sequence, allow
the identification of better-studied proteins that share
properties with the query protein. In particular, we fo-
cused on the important tasks of identifying and compar-
ing proteins in the database to reveal the function of

a novel protein. Ideally, search tools will be sufficiently
computationally efficient to enable access to the full
PDB, while returning only, or mostly, relevant results.
Here, we surveyed several projects, in which we were in-
volved, which focused on searching the PDB and relating
protein structure and function spaces. We believe that
characterization of the relationships among protein se-
quence, structure, and function spaces can be useful for
developing better computational tools, and that such
characterization and development of such tools are
among the most important challenges facing computa-
tional structural biologists today.

References

[1] R. Kolodny, L. Pereyaslavets, A. O. Samson, M. Levitt,
Annu. Rev. Biophys. 2013, 42.

[2] W. R. Pearson, Methods Enzymol. 1996, 266, 227.
[3] A. G. Murzin, Curr. Opin. Struct. Biol. 1998, 8, 380.
[4] C. Chothia, A. M. Lesk, EMBO J. 1986, 5, 823.
[5] C. Sander, R. Schneider, Proteins: Struct., Funct., Bioinf.

1991, 9, 56.
[6] B. Rost, Protein Eng. 1999, 12, 85.
[7] R. Kolodny, P. Koehl, M. Levitt, J. Mol. Biol. 2005, 346,

1173.
[8] a) L. Holm, C. Sander, J. Mol. Biol. 1993, 233, 123; b) A. S.

Yang, B. Honig, J. Mol. Biol. 2000, 301, 665.
[9] R. Kolodny, N. Linial, Proc. Natl. Acad. Sci. U.S.A. 2004,

101, 12201.
[10] S. Subbiah, D. V. Laurents, M. Levitt, Curr. Biol. 1993, 3,

141.
[11] O. C. Redfern, A. Harrison, T. Dallman, F. M. Pearl, C. A.

Orengo, PLoS Comput. Biol. 2007, 3, e232.
[12] I. N. Shindyalov, P. E. Bourne, Protein Eng. 1998, 11, 739.

Figure 7. Positions of significant and conserved residues and modulatory residues in multiple RGS proteins. (A) Residue-level sequence
map summarizing the structure analysis and energy calculations of eight RGS–Ga crystal structures. The sequences in the multiple se-
quence alignment are taken from the crystal structures. RGS protein residues that contribute substantially to the interaction with Ga subu-
nits are color-coded in the panel according to the type of their energetic contribution (see legend). Significant and conserved positions
and putative modulatory positions are marked above the alignment by red asterisks and purple triangles, respectively. (B) Significant and
conserved residues and modulatory residues in the eight superimposed RGS domain structures, shown as spheres, and colored red and
purple, respectively. (C) Same as panel B, rotated 908 about the Y axis.

Isr. J. Chem. 2012, 52, 1 – 10 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.ijc.wiley-vch.de &9&

These are not the final page numbers! ��

Protein Structure to Function via Computation

http://www.ijc.wiley-vch.de


[13] F. Teichert, U. Bastolla, M. Porto, BMC Bioinf. 2007, 8, 425.
[14] M. Menke, B. Berger, L. Cowen, PLoS Comput. Biol. 2008,

4, e10.
[15] E. Krissinel, K. Henrick, Acta Crystallogr. , Sect. D.: Biol.

Crystallogr. 2004, 60, 2256.
[16] a) O. Redfern, C. Bennett, C. Orengo, in Encyclopedia of

Genetics, Genomics, Proteomics and Bioinformatics, John
Wiley & Sons, Ltd., 2004 ; b) P. Koehl, Curr. Opin. Struct.
Biol. 2001, 11, 348; c) M. Sierk, G. Kleywegt, Structure
2004, 12, 2103.

[17] D. Cozzetto, A. Kryshtafovych, K. Fidelis, J. Moult, B. Rost,
A. Tramontano, Proteins 2009, 77 Suppl 9, 18.

[18] A. Zemla, Nucleic Acids Res. 2003, 31, 3370.
[19] Y. Zhang, J. Skolnick, Proteins: Struct., Funct., Bioinf. 2004,

57, 702.
[20] N. Siew, A. Elofsson, L. Rychlewski, D. Fischer, Bioinfor-

matics 2000, 16, 776.
[21] B. A. Reva, A. V. Finkelstein, J. Skolnick, Folding Des.

1998, 3, 141.
[22] S. Shi, J. Pei, R. I. Sadreyev, L. N. Kinch, I. Majumdar, J.

Tong, H. Cheng, B.-H. Kim, N. V. Grishin, Database 2009,
2009.

[23] a) J. Xu, Y. Zhang, Bioinformatics 2010, 26, 889; b) Y.
Zhang, Curr. Opin. Struct. Biol. 2009, 19, 145.

[24] a) S. Griep, U. Hobohm, Nucleic Acids Res. 2010, 38, D318;
b) U. Hobohm, M. Scharf, R. Schneider, C. Sander, Protein
Sci. 1992, 1, 409.

[25] G. Wang, R. L. Dunbrack, Bioinformatics 2003, 19, 1589.
[26] M. Kosloff, R. Kolodny, Proteins 2008, 71, 891.
[27] P. V. Burra, Y. Zhang, A. Godzik, B. Stec, Proc. Natl. Acad.

Sci. U.S.A. 2009, 106, 10505.
[28] A. G. Murzin, Science 2008, 320, 1725.
[29] Z. Aung, K.-L. Tan, Drug Discovery Today 2007, 12, 732.
[30] S. Brin, L. Page, Comput. Networks ISDN 1998, 30, 107.
[31] O. Carugo, S. Pongor, J. of Mol. Biol. 2002, 315, 887.
[32] I. G. Choi, J. Kwon, S. H. Kim, Proc. Natl. Acad. Sci. U.S.A.

2004, 101, 3797.
[33] P. Rogen, B. Fain, Proc. Natl. Acad. Sci. U.S.A. 2003, 100,

119.
[34] E. Zotenko, D. O’Leary, T. Przytycka, BMC Struct. Biol.

2006, 6, 12.
[35] Z. Zhang, H. Lee, I. Mihalek, BMC Bioinf. 2010, 11, 155.
[36] C. H. Tung, J. W. Huang, J. M. Yang, Genome Biol. 2007, 8,

R31.
[37] M. Carpentier, S. Brouillet, J. Pothier, Proteins: Struct.,

Funct., Bioinf. 2005, 61, 137.
[38] A. Sacan, I. H. Toroslu, H. Ferhatosmanoglu, Bioinformatics

2008, 24, 2872.
[39] I. Budowski-Tal, Y. Nov, R. Kolodny, Proc. Natl. Acad. Sci.

U.S.A. 2010, 107, 3481.
[40] R. Kolodny, P. Koehl, L. Guibas, M. Levitt, J. Mol. Biol.

2002, 323, 297.
[41] M. Osadchy, R. Kolodny, Proc. Natl. Acad. Sci. U.S.A. 2011,

108, 12301.

[42] C. A. Orengo, T. P. Flores, W. R. Taylor, J. M. Thornton,
Protein Eng. 1993, 6, 485.

[43] L. Holm, C. Sander, Science 1996, 273, 595.
[44] a) J. Hou, G. E. Sims, C. Zhang, S. H. Kim, Proc. Natl.

Acad. Sci. U.S.A. 2003, 100, 2386; b) J. Hou, S. R. Jun, C.
Zhang, S. H. Kim, Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
3651; c) I. G. Choi, S. H. Kim, Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 14056.

[45] T. J. Hubbard, B. Ailey, S. E. Brenner, A. G. Murzin, C.
Chothia, Nucleic Acids Res. 1999, 27, 254.

[46] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B.
Swindells, J. M. Thornton, Structure 1997, 5, 1093.

[47] J. B. Tenenbaum, V. d. Silva, J. C. Langford, Science 2000,
290, 2319.

[48] H. F. Winstanley, S. Abeln, C. M. Deane, Bioinformatics
2005, 21, 449.

[49] a) M. Punta, Y. Ofran, PLoS Comput. Biol. 2008, 4,
e1000160; b) B. Rost, J. Liu, R. Nair, K. O. Wrzeszczynski,
Y. Ofran, Cell. Mol. Life Sci. 2003, 60, 2637; c) A. Godzik,
M. Jambon, I. Friedberg, Cell. Mol. Life Sci. 2007, 64, 2505;
d) I. Friedberg, M. Jambon, A. Godzik, Protein Sci. 2006,
15, 1527.

[50] J. D. Watson, S. Sanderson, A. Ezersky, A. Savchenko, A.
Edwards, C. Orengo, A. Joachimiak, R. A. Laskowski, J. M.
Thornton, J. Mol. Biol. 2007, 367, 1511.

[51] M. Kosloff, Z. Selinger, J. Mol. Biol. 2003, 331, 1157.
[52] M. Kosloff, G. W. Han, S. S. Krishna, R. Schwarzenbacher,

M. Fasnacht, M.-A. Elsliger, P. Abdubek, S. Agarwalla, E.
Ambing, T. Astakhova, H. L. Axelrod, J. M. Canaves, D.
Carlton, H.-J. Chiu, T. Clayton, M. DiDonato, L. Duan, J.
Feuerhelm, C. Grittini, S. K. Grzechnik, J. Hale, E. Hamp-
ton, J. Haugen, L. Jaroszewski, K. K. Jin, H. Johnson, H. E.
Klock, M. W. Knuth, E. Koesema, A. Kreusch, P. Kuhn, I.
Levin, D. McMullan, M. D. Miller, A. T. Morse, K. Moy, E.
Nigoghossian, L. Okach, S. Oommachen, R. Page, J. Paul-
sen, K. Quijano, R. Reyes, C. L. Rife, E. Sims, G. Spraggon,
V. Sridhar, R. C. Stevens, H. van den Bedem, J. Velasquez,
A. White, G. Wolf, Q. Xu, K. O. Hodgson, J. Wooley, A. M.
Deacon, A. Godzik, S. A. Lesley, I. A. Wilson, Proteins:
Struct., Funct., Bioinf. 2006, 65, 527.

[53] M. Kosloff, A. M. Travis, D. E. Bosch, D. P. Siderovski, V. Y.
Arshavsky, Nat. Struct. Mol. Biol. 2011, 18, 846.

[54] F. B. Sheinerman, B. Al-Lazikani, B. Honig, J. Mol. Biol.
2003, 334, 823.

[55] B. Honig, A. Nicholls, Science 1995, 268, 1144.
[56] S. Sridharan, A. Nicholls, B. Honig, Biophys. J. 1992, 6,

A174.
[57] a) G. Schreiber, A. E. Keating, Curr. Opin. Struct. Biol.

2011, 21, 50; b) . J. Mandell, T. Kortemme, Nat. Chem. Biol.
2009, 5, 797.

[58] I. Friedberg, Briefings Bioinf. 2006, 7, 225.

Received: October 7, 2012
Accepted: December 6, 2012

Published online: && &&, 0000

&10& www.ijc.wiley-vch.de � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Isr. J. Chem. 2012, 52, 1 – 10

�� These are not the final page numbers!

Review R. Kolodny and M. Kosloff

http://www.ijc.wiley-vch.de

